Extensions 1→N→G→Q→1 with N=D4xD5 and Q=C22

Direct product G=NxQ with N=D4xD5 and Q=C22
dρLabelID
C22xD4xD580C2^2xD4xD5320,1612

Semidirect products G=N:Q with N=D4xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(D4xD5):1C22 = D8:13D10φ: C22/C1C22 ⊆ Out D4xD5804(D4xD5):1C2^2320,1429
(D4xD5):2C22 = D8:15D10φ: C22/C1C22 ⊆ Out D4xD5804+(D4xD5):2C2^2320,1441
(D4xD5):3C22 = D8:5D10φ: C22/C1C22 ⊆ Out D4xD5808+(D4xD5):3C2^2320,1446
(D4xD5):4C22 = C2xD5xD8φ: C22/C2C2 ⊆ Out D4xD580(D4xD5):4C2^2320,1426
(D4xD5):5C22 = C2xD8:D5φ: C22/C2C2 ⊆ Out D4xD580(D4xD5):5C2^2320,1427
(D4xD5):6C22 = C2xD40:C2φ: C22/C2C2 ⊆ Out D4xD580(D4xD5):6C2^2320,1431
(D4xD5):7C22 = Q16:D10φ: C22/C2C2 ⊆ Out D4xD5804(D4xD5):7C2^2320,1440
(D4xD5):8C22 = D5xC8:C22φ: C22/C2C2 ⊆ Out D4xD5408+(D4xD5):8C2^2320,1444
(D4xD5):9C22 = SD16:D10φ: C22/C2C2 ⊆ Out D4xD5808-(D4xD5):9C2^2320,1445
(D4xD5):10C22 = D40:C22φ: C22/C2C2 ⊆ Out D4xD5808+(D4xD5):10C2^2320,1449
(D4xD5):11C22 = C2xD4:6D10φ: C22/C2C2 ⊆ Out D4xD580(D4xD5):11C2^2320,1614
(D4xD5):12C22 = C2xD4:8D10φ: C22/C2C2 ⊆ Out D4xD580(D4xD5):12C2^2320,1619
(D4xD5):13C22 = C10.C25φ: C22/C2C2 ⊆ Out D4xD5804(D4xD5):13C2^2320,1621
(D4xD5):14C22 = D20.37C23φ: C22/C2C2 ⊆ Out D4xD5808-(D4xD5):14C2^2320,1623
(D4xD5):15C22 = D20.39C23φ: C22/C2C2 ⊆ Out D4xD5808+(D4xD5):15C2^2320,1625
(D4xD5):16C22 = C2xD5xC4oD4φ: trivial image80(D4xD5):16C2^2320,1618
(D4xD5):17C22 = D5x2+ 1+4φ: trivial image408+(D4xD5):17C2^2320,1622

Non-split extensions G=N.Q with N=D4xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(D4xD5).1C22 = D20.29D4φ: C22/C1C22 ⊆ Out D4xD5804(D4xD5).1C2^2320,1434
(D4xD5).2C22 = D8:11D10φ: C22/C1C22 ⊆ Out D4xD5804(D4xD5).2C2^2320,1442
(D4xD5).3C22 = D8:6D10φ: C22/C1C22 ⊆ Out D4xD5808-(D4xD5).3C2^2320,1447
(D4xD5).4C22 = C40.C23φ: C22/C1C22 ⊆ Out D4xD5808+(D4xD5).4C2^2320,1450
(D4xD5).5C22 = D8xF5φ: C22/C1C22 ⊆ Out D4xD5408+(D4xD5).5C2^2320,1068
(D4xD5).6C22 = D40:C4φ: C22/C1C22 ⊆ Out D4xD5408+(D4xD5).6C2^2320,1069
(D4xD5).7C22 = SD16xF5φ: C22/C1C22 ⊆ Out D4xD5408(D4xD5).7C2^2320,1072
(D4xD5).8C22 = SD16:F5φ: C22/C1C22 ⊆ Out D4xD5408(D4xD5).8C2^2320,1073
(D4xD5).9C22 = C2xD5xSD16φ: C22/C2C2 ⊆ Out D4xD580(D4xD5).9C2^2320,1430
(D4xD5).10C22 = D5xC4oD8φ: C22/C2C2 ⊆ Out D4xD5804(D4xD5).10C2^2320,1439
(D4xD5).11C22 = D5xC8.C22φ: C22/C2C2 ⊆ Out D4xD5808-(D4xD5).11C2^2320,1448
(D4xD5).12C22 = C2xD20:C4φ: C22/C2C2 ⊆ Out D4xD580(D4xD5).12C2^2320,1104
(D4xD5).13C22 = (D4xC10):C4φ: C22/C2C2 ⊆ Out D4xD5408+(D4xD5).13C2^2320,1105
(D4xD5).14C22 = C4oD4:F5φ: C22/C2C2 ⊆ Out D4xD5408(D4xD5).14C2^2320,1131
(D4xD5).15C22 = C4oD20:C4φ: C22/C2C2 ⊆ Out D4xD5808(D4xD5).15C2^2320,1132
(D4xD5).16C22 = C2xD4xF5φ: C22/C2C2 ⊆ Out D4xD540(D4xD5).16C2^2320,1595
(D4xD5).17C22 = D10.C24φ: C22/C2C2 ⊆ Out D4xD5408+(D4xD5).17C2^2320,1596
(D4xD5).18C22 = C4oD4xF5φ: C22/C2C2 ⊆ Out D4xD5408(D4xD5).18C2^2320,1603
(D4xD5).19C22 = D5.2+ 1+4φ: C22/C2C2 ⊆ Out D4xD5408(D4xD5).19C2^2320,1604
(D4xD5).20C22 = D5x2- 1+4φ: trivial image808-(D4xD5).20C2^2320,1624

׿
x
:
Z
F
o
wr
Q
<